Abstract
This research is aimed at the development of a dynamic control to enhance the performance of the existing dynamic controllers for mobile robots. System dynamics of the car-like robot with non-holonomic constraints were employed. A backstepping approach for the design of a discontinuous state feedback controller is used for the design of the controller. It is shown that the origin of the closed-loop system can be made stable in the sense of Lyapunov. The control design is made on the basis of a suitable Lyapunov function candidate. The effectiveness of the proposed approach is tested through simulation on a car-like vehicle mobile robot.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have