Abstract

This paper proposes a novel model for video generation and especially makes the attempt to deal with the problem of video generation from text descriptions, i.e., synthesizing realistic videos conditioned on given texts. Existing video generation methods cannot be easily adapted to handle this task well, due to the frame discontinuity issue and their text-free generation schemes. To address these problems, we propose a recurrent deconvolutional generative adversarial network (RD-GAN), which includes a recurrent deconvolutional network (RDN) as the generator and a 3D convolutional neural network (3D-CNN) as the discriminator. The RDN is a deconvolutional version of conventional recurrent neural network, which can well model the long-range temporal dependency of generated video frames and make good use of conditional information. The proposed model can be jointly trained by pushing the RDN to generate realistic videos so that the 3D-CNN cannot distinguish them from real ones. We apply the proposed RD-GAN to a series of tasks including conventional video generation, conditional video generation, video prediction and video classification, and demonstrate its effectiveness by achieving well performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.