Abstract

Recently, three dimensional (3D) convolutional neural networks (CNNs) have emerged as dominant methods to capture spatiotemporal representations in videos, by adding to pre-existing 2D CNNs a third, temporal dimension. Such 3D CNNs, however, are anti-causal (i.e., they exploit information from both the past and the future frames to produce feature representations, thus preventing their use in online settings), constrain the temporal reasoning horizon to the size of the temporal convolution kernel, and are not temporal resolution-preserving for video sequence-to-sequence modelling, as, for instance, in action detection. To address these serious limitations, here we present a new 3D CNN architecture for the causal/online processing of videos. Namely, we propose a novel Recurrent Convolutional Network (RCN), which relies on recurrence to capture the temporal context across frames at each network level. Our network decomposes 3D convolutions into (1) a 2D spatial convolution component, and (2) an additional hidden state 1 × 1 convolution, applied across time. The hidden state at any time t is assumed to depend on the hidden state at t - 1 and on the current output of the spatial convolution component. As a result, the proposed network: (i) produces causal outputs, (ii) provides flexible temporal reasoning, (iii) preserves temporal resolution. Our experiments on the largescale large Kinetics and MultiThumos datasets show that the proposed method performs comparably to anti-causal 3D CNNs, while being causal and using fewer parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.