Abstract

Stable and flexible neural representations of space in the hippocampus are crucial for navigating complex environments. However, how these distinct representations emerge from the underlying local circuit architecture remains unknown. Using two-photon imaging of CA3 subareas during active behavior, we reveal opposing coding strategies within specific CA3 subregions, with proximal neurons demonstrating stable and generalized representations and distal neurons showing dynamic and context-specific activity. We show in artificial neural network models that varying the recurrence level causes these differences in coding properties to emerge. We confirmed the contribution of recurrent connectivity to functional heterogeneity by characterizing the representational geometry of neural recordings and comparing it with theoretical predictions of neural manifold dimensionality. Our results indicate that local circuit organization, particularly recurrent connectivity among excitatory neurons, plays a key role in shaping complementary spatial representations within the hippocampus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.