Abstract

Using first-principles density functional theory and non-equilibrium Green's function formalism for quantum transport calculation, we have investigated the electronic transport properties of (8,0), (9,0) and (13,0) zigzag single-walled carbon nanotube junctions with one undoped and one nitrogen-doped zigzag carbon nanotube electrode. Our results show that the transport properties are strongly dependent on the magnitude of energy gap of carbon nanotube. Large rectifying behavior can be obtained in the junction with large energy gap. The observed rectifying behavior are explained in terms of the evolution of the transmission spectra and energy band structures with applied bias voltage combined with molecular projected self-consistent Hamiltonian eigenstates analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call