Abstract

Using a first-principle density functional theory and non-equilibrium Green's function formalism for quantum transport calculation, we have investigated the electronic transport properties of a new dumbbell-like carbon nanocomposite, in which one carbon nanotube segment is capped with two C60 fullerenes. Our results show that the current–voltage curve reveals a highly nonlinear feature. A negative differential resistance (NDR) behavior is obtained at a very low bias, which is expected to be helpful for the development of low bias NDR-based molecular devices. Moreover, the carbon nanotube length and fullerene type can affect the NDR behavior strongly. The electronic transport is analyzed from the transmission spectra and the molecular projected self-consistent Hamiltonian states under different applied biases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call