Abstract

Tungsten is the material of choice for the divertor region of future nuclear fusion reactors, an environment that will expose plasma-facing components (e.g. divertor, etc...) to high temperatures and transient high heat flux events. Under these conditions, recrystallization and grain growth of tungsten can occur, leading to undesirable microstructural and mechanical property changes. Therefore, there is a need to raise the recrystallization temperature of tungsten and limit the kinetics of the recrystallization and grain growth processes. In this work, we examine the effect of different types (TiC vs. TaC vs. ZrC) and different concentrations (1.1 vs. 5 vs. 10 wt.%) of dispersed second phase particles in a tungsten matrix on the high temperature performance. The addition of second-phase particles effectively increases the temperature of and time for recrystallization and slow grain growth; however, the addition of a high weight fraction of particles alters the surface chemistry, which may impact subsequent plasma-surface interactions. These results show that the addition of small concentrations of dispersed particles can be effectively employed in tungsten to raise the upper operating temperature limit for tungsten in a fusion reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.