Abstract

Abstract The deformation and recrystallization behaviour with associated microstructural and textural evolutions, precipitation formation and dissolution behaviour, and structure-property correlations have been investigated in V–Ti–Ta alloy system. Recrystallization temperature in this system was found to be in the range of 1250–1300 °C, 200 °C higher than reference V–4Ti–4Cr alloy. Substitutional solid solution strengthening by Ta was found to be the dominant strengthening mechanism. In addition, Ta was also found to influence the precipitation behaviour of V–Ti–Ta alloys. Synchrotron XRD and TEM-EDS results indicated the composition of precipitate to be (Ti,Ta)CON in contrast to V–Ti–Cr system where no Cr is found in the precipitates. Theoretical calculations based on thermodynamics and experimental evidence are presented which indicate desirable enhanced precipitate stability in this system due to presence of Ta. Deformation texture of the alloy was found to exhibit prominent θ-fibre, whereas the recrystallized texture had shown predominant γ-fibre texture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call