Abstract

Insulin-like growth factor receptor (IGF-IR) signalling classically involves phosphorylation of insulin receptor substrate-1 (IRS-1) to recruit key down-stream signalling pathways effecting breast cancer cell proliferation and survival. Recently, we have shown a further capacity for IRS-1 to associate with the epidermal growth factor receptor (EGFR/erbB1), with activation of EGFR promoting recruitment and phosphorylation of IRS-1 in an oestrogen receptor (ER)-positive tamoxifen-resistant breast cancer cell line. In this study, we examined recruitment of IRS-1 by another member of the erbB receptor family, erbB3, in three ER-positive breast cancer cell lines. Our studies revealed an interaction between erbB3 and IRS-1 in MCF-7, T47D and BT474 cells with HRGβ1 treatment significantly enhancing this recruitment and promoting IRS-1 phosphorylation at tyrosine (Y) 612, a specific phosphoinositide 3-kinase (PI3K) binding site. IRS-1 appears to play a key role in erbB3 signalling in MCF-7 and T47D cells as its knockdown using siRNA greatly impaired HRGβ1 signalling via PI3K/AKT in these cell lines. This novel interaction may have clinical relevance as immunohistochemical analysis of ER-positive breast cancer patient samples revealed IRS-1 Y612 expression positively correlated with total erbB3, p-AKT and Ki67 expression. Importantly, we found that recruitment of IRS-1 by erbB3 impaired IRS-1 recruitment by IGF-IR in both MCF-7 and T47D cells, whilst blockade of IGF-1R enhanced erbB3/IRS-1 interaction and sensitised both cell lines to HRGβ1. Consequently, blockade of erbB3 signalling enhanced the effects of IGF-IR inhibition in these cells. In conclusion, these and previous findings suggest that IRS-1 can be recruited to IGF-1R, EGFR and erbB3 in ER-positive breast cancer cells and this may provide an adaptive resistance mechanism when these receptors are targeted individually. Consequently co-targeting of IGF-IR and erbB receptors may prove to be a more effective strategy for the treatment of ER-positive breast cancer.

Highlights

  • The response rarely sustains long among the responders for Herceptin monotherapy treatment

  • We have provided a novel mechanism of acquired resistance to Herceptin in human epidermal growth factor receptor 2 (HER2)-positive breast cancer and have resolved the inconsistencies in the literature regarding the effect of Herceptin on HER2 phosphorylation

  • Using a range of biochemical and cell-biology techniques, we have shown that BRCA1 is modified by SUMO in response to genotoxic stress, and co-localises at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO conjugating enzyme Ubc9

Read more

Summary

Introduction

The response rarely sustains long among the responders for Herceptin (trastuzumab) monotherapy treatment. BRCA1 is strongly implicated in the maintenance of genomic stability by its involvement in multiple cellular pathways including DNA damage signalling, DNA repair, cell cycle regulation, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis Both pathological and gene expression profiling studies provide evidence that breast cancers with germline mutations in BRCA1 are different from non-BRCA1-related breast cancers. The vitreous humour is one of the few tissues in the body that is avascular and virtually acellular, and previous studies have indicated that opticin contributes to the maintenance of this state by inhibition of angiogenesis The aim of this present study is to investigate the effect and mode of action of opticin in suppressing tumour cell proliferation and migration in vitro in a panel of breast cancer cell lines and to establish its therapeutic efficacy in human breast tumour xenografts in vivo. Using receptorselective ligands (patent filed by MRC Technology) specific for the TRAIL death receptors, TRAIL-R1/TRAIL-R2, we have previously shown that primary leukaemic cells isolated from patients with chronic lymphocytic leukaemia can be selectively sensitized to apoptosis by combining an a histone deacetylase inhibitor (HDACi) with a TRAIL-R1-specific form of TRAIL/TRAIL-R1 mAb

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call