Abstract

IntroductionRecently we reported that insulin receptor substrate 1 (IRS-1), classically an adaptor protein for the insulin-like growth factor type I receptor (IGF-IR), associates with the epidermal growth factor receptor in oestrogen receptor (ER)-positive (ER+) tamoxifen-resistant breast cancer cells. In this study, we examined whether IRS-1 also associates with another erbB receptor family member, erbB3, and what impact this might have on IGF-IR signalling in three ER+ breast cancer cell lines.MethodsImmunoprecipitation and Western blot analysis were utilised to examine the potential association between erbB3 and IRS-1 in MCF-7, T47D and BT-474 cells in the absence and presence of the erbB3/4 ligand heregulin β1 (HRGβ1). Subsequently, the impact of a selective IGF-IR/IR inhibitor 4-anilino-5-bromo-2-[4-(2-hydroxy-3-(N, N-dimethylamino)propoxy)anilino]pyrimidine on this association and HRGβ1 signalling was assessed in these cell lines. Immunohistochemical analysis of a small cohort of ER+ breast cancer patient samples was also performed to determine the potential clinical relevance of this novel interaction.ResultsImmunoprecipitation and Western blot analysis revealed an interaction between erbB3 and IRS-1 in MCF-7, T47D and BT-474 cells, with HRGβ1 significantly enhancing this recruitment and promoting IRS-1 phosphorylation at Y612. IRS-1 participates in erbB3 signalling in MCF-7 and T47D cells as IRS-1 knockdown impaired HRGβ1 signalling. Importantly, recruitment of IRS-1 by erbB3 reduced IRS-1 association with IGF-IR in MCF-7 and T47D cells, whilst blockade of IGF-IR-enhanced erbB3-IRS-1 interaction and sensitised both cell lines to HRGβ1, allowing HRGβ1 to override IGF-IR blockade. Consequently, suppression of IRS-1 signalling enhanced the effects of IGF-IR inhibition in these cells. This novel interaction may have clinical relevance, as immunohistochemical analysis of a small ER+ breast tumour series revealed significant positive correlations between phosphorylated IRS-1 Y612 expression and total erbB3, phosphorylated Akt and Ki-67 expression.ConclusionsIRS-1 can be recruited to IGF-IR and erbB3 in ER+ breast cancer cells, and this provides an adaptive resistance mechanism when these receptors are targeted individually. Consequently, cotargeting IGF-IR and either erbB3 or IRS-1 should prove to be a more effective strategy for the treatment of ER+ breast cancer.

Highlights

  • We reported that insulin receptor substrate 1 (IRS-1), classically an adaptor protein for the insulin-like growth factor type I receptor (IGF-IR), associates with the epidermal growth factor receptor in oestrogen receptor (ER)-positive (ER+) tamoxifen-resistant breast cancer cells

  • In the present study, using a panel of ER+ breast cancer cell lines, we examined for the first time whether IRS-1 can contribute to erbB3 signalling in breast cancer and what impact this may have on IGF-IR signalling

  • Insulin receptor substrate 1 associates with erbB receptors in MCF-7, T47D and BT-474 cells Immunoprecipitation and Western blot analysis were performed to examine whether IRS-1 associates with erbB receptors, notably erbB3, in the ER+ breast cancer cell lines

Read more

Summary

Introduction

We reported that insulin receptor substrate 1 (IRS-1), classically an adaptor protein for the insulin-like growth factor type I receptor (IGF-IR), associates with the epidermal growth factor receptor in oestrogen receptor (ER)-positive (ER+) tamoxifen-resistant breast cancer cells. Binding results in phosphorylation of their carboxyl termini at multiple tyrosine residues, and these phosphotyrosine residues provide docking sites for the recruitment of key signalling pathways, such as the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K) pathways [15]. These signalling cascades can mediate mechanisms underlying tumour growth and progression, implicating a potential role for IRS members in oncogenesis [1,15,16,17,18]. IRS-1 and IRS-2 have been implicated in the regulation of proliferation, survival and metastatic potential in a range of breast cancer cell lines [17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.