Abstract

The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gβγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gβγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gβγ. Inversely, the GIRK2 homotetramers exhibit low Ibasal and strong activation by Gβγ. The high Ibasal of GIRK1 seems to be associated with its unique distal C terminus (G1-dCT), which is not present in the other subunits. We investigated the role of G1-dCT using electrophysiological and fluorescence assays in Xenopus laevis oocytes and protein interaction assays. We show that expression of GIRK1/2 increases the plasma membrane level of coexpressed Gβγ (a phenomenon we term 'Gβγ recruitment') but not of coexpressed Gαi3. All GIRK1-containing channels, but not GIRK2 homomers, recruited Gβγ to the plasma membrane. In biochemical assays, truncation of G1-dCT reduces the binding between the cytosolic parts of GIRK1 and Gβγ, but not Gαi3. Nevertheless, the truncation of G1-dCT does not impair activation by Gβγ. In fluorescently labelled homotetrameric GIRK1 channels and in the heterotetrameric GIRK1/2 channel, the truncation of G1-dCT abolishes Gβγ recruitment and decreases Ibasal. Thus, we conclude that G1-dCT carries an essential role in Gβγ recruitment by GIRK1 and, consequently, in determining its high basal activity. Our results indicate that G1-dCT is a crucial part of a Gβγ anchoring site of GIRK1-containing channels, spatially and functionally distinct from the site of channel activation by Gβγ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.