Abstract

Sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) may be necessary to alleviate the depletion of strategic metal resources and potential risk of environmental pollution. Herein a hydrometallurgical process was proposed to explore the possibility for the recovery of valuable metals from the cathode materials (LiCoO2) of spent LIBs using phosphoric acid as both leaching and precipitating agent under mild leaching conditions. According to the leaching results, over 99% Co can be separated and recovered as Co3(PO4)2 in a short-cut process involved merely with leaching and filtrating, under the optimized leaching conditions of 40°C (T), 60min (t), 4 vol.% H2O2, 20mLg−1 (L/S) and 0.7mol/L H3PO4. Then leaching kinetics was investigated based on the logarithmic rate kinetics model and the obtained results indicate that the leaching of Co and Li fits well with this model and the activation energies (Ea) for Co and Li are 7.3 and 10.2kJ/mol, respectively. Finally, it can be discovered from characterization results that the obtained product is 97.1% pure cobalt phosphate (Co3(PO4)2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.