Abstract
It is cost effective and thermodynamically feasible to recover EDTA and remove potential toxic elements (PTEs) with sulfide precipitation from soil-washing wastewater produced from EDTA washing PTEs-contaminated soil. However, poor solid-liquid separation and EDTA recovery restrict its application due to a large number of fine particles formed during the precipitation process. This study investigated the effect of single factor on PTEs (Cu, Pb, Cd, and Zn) removal and solid-liquid separation from wastewater. The results showed that Zn was the most difficult to remove compared with Cu, Pb, and Cd; with the aid of Ca(OH)2, Zn removal efficiency was improved from 22.16% to 92.45%, and over 70.98 min, its average rate was 4.2 times that obtained without Ca(OH)2 dosage; undissolved Ca(OH)2 adsorbed suspended particles, acted as condensation nucleus, and promoted similar flocculation effect (self-flocculation); dissolved Ca(OH)2 modified the charge on the surface of suspended particles by changing the zeta potential from −36.77 ± 1.2 mV to −25.39 ± 3.06 mV and weakened the electrostatic repulsion between the suspended particles, and promoted their adsorption and flocculation precipitation, thereby improving the solid-liquid separation. The acid-recovered EDTA was analyzed in the protonated form (H4EDTA) using Fourier transform infrared (FT-IR) spectroscopy, and it maintained the same ability to extract PTEs from the soil as that of fresh EDTA over several cycles. This indicates that Ca(OH)2-enhanced sulfide precipitation can effectively treat soil-washing wastewater and recover EDTA and potentially reduce the cost of remediation techniques for PTEs-contaminated soil with EDTA-enhanced soil washing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have