Abstract

Scarcity in mining and geo-political direction diverts attention toward critical metal recycling. Gallium (Ga), indium (In) and germanium (Ge) are among the critical metals that consume approximately 80% of world mining in the innovative production of electrical and electronic equipment. The fast obsolescing rate generates a large amount of electronic waste, which is now seen as a secondary reservoir for critical metals. These metal resources need to be dealt with with effective recycling capabilities. Based on solid-phase extraction, magnetic nano-hydrometallurgy is opening a new area of metallic contents recovery in conventional hydrometallurgy. In the present work, polyacrylonitrile (PAN) based electrospun nanofibres were synthesized and carbonized at 800°C in an inert environment. After surface oxidation, carbon nanofibres were decorated with magnetite particles through co-precipitation. The saturation magnetization value (Ms = 23.6emu/g) confirms high loading of magnetite particles. The selected critical metal ions are freely present in an aqueous solution at pH 1 to 3; thus, highest removal efficiency was observed at pH 2. Pseudo-second-order kinetics confirm the chemical/charge interaction between sorbent and sorbate ions. Maximum sorption capacity calculated through Langmuir isotherm was 226, 191 and 171mg/g for Ge(IV), Ga(III) and In(III) metal ions, respectively. The RL value (0 < RL < 1) indicates favourable sorption process. The sorbed target metal ions were collectively eluted using 1mol/L hydrochloric acid. The preconcentration factor was calculated at 1080 for Ge(IV) and In(III) while 1260 for Ga(III). The method was validated with 5µg/mL spiked multi-element standards and applied to multiple acid-leached electronic waste samples like PCBs, waste LCD panels and solar panels. Recoveries in the range of 96.2% for Ga(III), 95.6% for In(III) and 97.4% for Ge(IV) in the presence of diverse ions indicate the suitability of the proposed method for target metal ions even in a complex matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call