Abstract

The wide application of lithium-ion batteries (LIBs) for electric vehicles forebodes the decommissioning tide of spent LIBs. Therefore, recycling valuable element from spent LIBs are becoming urgent to minimize the impact on the environment and supply chain of battery manufacturers. In this work, we propose to extract valuable elements from the cathode materials of spent ternary lithium-ion batteries and synthesize NiCoMnOx catalysts for low-temperature NH3 selective catalyst reduction (NH3-SCR) reactions. The oxalic acid is used as a precipitant and reducing agent and prepared as NiCoMnOx catalyst by hydrothermal process and heat treatment. The as-prepared catalyst presents a porous fluffy foam structure with abundant oxygen defects, ensuring sufficient catalytic active sites. As a result, the NiCoMnOx catalyst exhibits optimal catalytic activity with over 90% NOx conversion in the temperature range of 110 ∼ 230 °C, which is wider than the temperature range of 155 ∼ 210 °C for the catalysts prepared from metal salts. Meanwhile, the NiCoMnOx catalyst also shows better catalytic stability and resistance to H2O and SO2. This work provides a promising strategy to recycle spent LIBs to low-temperature NH3-SCR catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.