Abstract
Recovering temporal point spread functions (PSFs) is important for various applications, especially analyzing light transport. Some methods that use amplitude-modulated continuous wave time-of-flight (ToF) cameras are proposed to recover temporal PSFs, where the resolution is several nanoseconds. Contrarily, we show in this paper that sub-nanosecond resolution can be achieved using pulsed ToF cameras and an additional circuit. A circuit is inserted before the illumination so that the emission delay can be controlled by sub-nanoseconds. From the observations of various delay settings, we recover temporal PSFs of the sub-nanosecond resolution. We confirm the effectiveness of our method via real-world experiments.
Highlights
When an image is recorded by a general camera, various optical phenomena are collectively recorded
Temporal point spread function (PSF) of a scene, which is a response to the impulsive light, is attracting attention because it can be used for analysis of interreflection and scattering
By analyzing temporal PSFs, how the light transports in the scene can be analyzed in detail
Summary
When an image is recorded by a general camera, various optical phenomena are collectively recorded. Temporal point spread function (PSF) of a scene, which is a response to the impulsive light, is attracting attention because it can be used for analysis of interreflection and scattering. By analyzing temporal PSFs, how the light transports in the scene can be analyzed in detail. Temporal PSF of the scene can be obtained using an interferometer [1], holography [2], and femtosecondpulsed laser [3], which requires complex optics and expensive devices. Heide et al [4] firstly recover a temporal PSF in an inexpensive way using an amplitude-modulated continuous wave ToF camera. Using a continuous wave ToF camera, the propagation of light in units of nanoseconds can be visualized [5–7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IPSJ Transactions on Computer Vision and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.