Abstract

Without knowledge of the absolute baseline between images, the scale of a map from a single-camera simultaneous localization and mapping system is subject to calamitous drift over time. We describe a monocular approach that in addition to point measurements also considers object detections to resolve this scale ambiguity and drift. By placing an expectation on the size of the objects, the scale estimation can be seamlessly integrated into a bundle adjustment. When object observations are available, the local scale of the map is then determined jointly with the camera pose in local adjustments. Unlike many previous visual odometry methods, our approach does not impose restrictions such as constant camera height or planar roadways, and is therefore more widely applicable. We evaluate our approach on the KITTI data set and show that it reduces scale drift over long-range outdoor sequences with a total length of 40 km. As the scale of objects is known absolutely, metric accuracy is obtained for all sequences. Qualitative evaluation is also performed on video footage from a hand-held camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.