Abstract
We are concerned with the inverse scattering problem of recovering an inhomogeneous medium by the associated acoustic wave measurement. We prove that under certain assumptions, a single far-field pattern determines the values of a perturbation to the refractive index on the corners of its support. These assumptions are satisfied, for example, in the low acoustic frequency regime. As a consequence if the perturbation is piecewise constant with either a polyhedral nest geometry or a known polyhedral cell geometry, such as a pixel or voxel array, we establish the injectivity of the perturbation to far-field map given a fixed incident wave. This is the first unique determinancy result of its type in the literature, and all of the existing results essentially make use of infinitely many measurements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have