Abstract
The aim of electrical impedance tomography (EIT) is to reconstruct the conductivity values inside a conductive object from electric measurements performed at the boundary of the object. EIT has applications in medical imaging, nondestructive testing, geological remote sensing and subsurface monitoring. Recovering the conductivity and its normal derivative at the boundary is a preliminary step in many EIT algorithms; Nakamura and Tanuma introduced formulae for recovering them approximately from localized voltage-to-current measurements in [Recent Development in Theories & Numerics, International Conference on Inverse Problems 2003]. The present study extends that work both theoretically and computationally. As a theoretical contribution, reconstruction formulas are proved in a more general setting. On the computational side, numerical implementation of the reconstruction formulae is presented in three-dimensional cylindrical geometry. These experiments, based on simulated noisy EIT data, suggest that the conductivity at the boundary can be recovered with reasonable accuracy using practically realizable measurements. Further, the normal derivative of the conductivity can also be recovered in a similar fashion if measurements from a homogeneous conductor (dummy load) are available for use in a calibration step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.