Abstract

In a structural health monitoring (SHM) system that uses digital cameras to monitor cracks of structural surfaces, techniques for reliable and effective data compression are essential to ensure a stable and energy-efficient crack images transmission in wireless devices, e.g., drones and robots with high definition cameras installed. Compressive sensing (CS) is a signal processing technique that allows accurate recovery of a signal from a sampling rate much smaller than the limitation of the Nyquist sampling theorem. Different from the popular approach of simultaneously training encoder and decoder using neural network models, the CS theory ensures a high probability of accurate signal reconstruction based on random measurements that is shorter than the length of the original signal under a sparsity constraint. Such method is particularly useful when measurements are expensive, such as wireless sensing of civil structures, because its hardware implementation allows down sampling of signals during the sensing process. Hence, CS methods can achieve significant energy saving for the sensing devices. However, the strong assumption of the signals being highly sparse in an invertible space is relatively hard to guarantee for many real images, such as image of cracks. In this paper, we present a new approach of CS that replaces the sparsity regularization with a generative model that is able to effectively capture a low dimension representation of targeted images. We develop a recovery framework for automatic crack segmentation of compressed crack images based on this new CS method. We demonstrate the remarkable performance of our method that takes advantage of the strong capability of generative models to capture the necessary features required in the crack segmentation task even the backgrounds of the generated images are not well reconstructed. The superior performance of our recovery framework is illustrated by comparisons to three existing CS algorithms. Furthermore, we show that our framework is potentially extensible to other common problems in automatic crack segmentation, such as defect recovery from motion blurring and occlusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call