Abstract

ABSTRACTIn this paper, we solve two types of inverse heat source problems: one recovers an unknown space-dependent heat source without using initial value, and another recovers both the unknown space-dependent heat source and the initial value. Upon inserting the adjoint Trefftz test functions into Green’s second identity, we can retrieve the unknown space-dependent heat source by an expansion method whose expansion coefficients are derived in closed form. We assess the stability of the closed-form expansion coefficients method by using the condition numbers of coefficients matrices. Then, numerical examples are performed, which demonstrates that the closed-form expansion coefficient method is effective and stable even when it imposes a large noise on the final time data. Next, we develop a coupled iterative scheme to recover the unknown heat source and initial value simultaneously, under two over specified temperature data at two different times. A simple regularization technique is derived to overcome the highly ill-posed behavior of the second inverse problem, of which the convergence rate and stability are examined. This results in quite accurate numerical results against large noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.