Abstract

ABSTRACTAs to recover a time-dependent heat source under an extra temperature measured at an interior point, we can reformulate it to be a three-point boundary value problem. We can develop a coupled boundary integral equation method, wherein by selecting two sets of adjoint test eigenfunctions in two sub domains and using polynomials as the trial functions of unknown heat source, the time-dependent heat source is recovered very well and quickly. Four numerical examples, including a discontinuous one, demonstrate the efficiency for the ill-posed inverse heat source problem in a large time duration and under a large noise up to 10–30%. Then, selecting three sets of adjoint test eigenfunctions in three domains: problem domain and two sub domains, and using the Pascal polynomials as trial functions, the unknown space-time-dependent heat source is recovered very fast and accurately from the solution of three coupled boundary integral equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.