Abstract

A scheme is proposed for converting a transport photonic qubit into a stationary qubit represented by the electronic states of quantum dots (QDs). The choice of the basis states of a qubit in the form of anti-symmetric combinations of the excited states of an array of QDs ensures their stability with respect to pho-ton/phonon relaxation processes. The formation of these states is due to the Stark and Förster interactions between electrons localized in the QDs. An algorithm for the controlled transformation (recording) of a pho-ton state into the electronic states of QDs using optical and electrostatic fields is considered. The possibility of tuning the frequency of the electronic transitions in the QDs in a gallium arsenide nanostructure using metal gates and a charged cantilever needle is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call