Abstract

Abstract. Glaciers worldwide are shrinking at an accelerated rate as the climate changes in response to anthropogenic influence. While increasing air temperature is the main factor behind glacier mass and volume loss, variable patterns of precipitation distribution also play a role, though these are not as well understood. Furthermore, while the response of surface glaciers (from large polar ice sheets to small alpine glaciers) to climatic changes is well documented and continuously monitored, little to nothing is known about how cave glaciers (perennial ice accumulations in rock-hosted caves) react to atmospheric warming. In this context, we present here the response of cave and surface glaciers in SE Europe to the extreme precipitation events occurring between May and July 2019 in SE Europe. Surface glaciers in the northern Balkan Peninsula lost between 17 % and 19 % of their total area, while cave glaciers in Croatia, Greece, Romania and Slovenia lost ice at levels higher than any recorded by instrumental observations during the past decades. The melting was likely the result of large amounts of warm water delivered directly to the surface of the glaciers, leading to rapid reduction in the area of surface glaciers and the thickness of cave glaciers. As climate models predict that such extreme precipitation events are set to increase in frequency and intensity, the presence of cave glaciers in SE Europe and the paleoclimatic information they host may be lost in the near future. Moreover, the same projected continuous warming and increase in precipitation extremes could pose an additional threat to the alpine glaciers in southern Europe, resulting in faster-than-predicted melting.

Highlights

  • The recent Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate highlighted the worldwide shrinking of the cryosphere, with ice sheets, mountain glaciers, snow cover and Arctic sea ice all losing mass and volume (IPCC, 2019)

  • Ice level was constant in Scarisoara Ice Cave between July 2018 and September 2018, when a shallow lake started to form on top of the ice block

  • We have investigated the response of cave and surface glaciers to extreme summer rain events in SE Europe during 2019 and unraveled unprecedented ice loss over the observational period

Read more

Summary

Introduction

The recent Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate highlighted the worldwide shrinking of the cryosphere, with ice sheets, mountain glaciers, snow cover and Arctic sea ice all losing mass and volume (IPCC, 2019). Small glaciers are most impacted by this recent melting, with climate scenarios suggesting losses of up to 80 % by the end of this century (IPCC, 2019) for glaciers in several regions, including central Europe. Both mountain and cave glaciers are sensitive indicators of climate change (Oerlemans, 2005; Kern and Persoiu, 2013), but while most studies aim to understand the response of glaciers to past, present and future climate changes, comparatively less attention has been devoted to the role of short-term weather variability and extreme events in ice mass and volume changes (e.g., Hughes, 2008). The cited IPCC report does not include information on glaciers in SE Europe, the region hosting Europe’s southernmost surface perennial ice bodies (Snezhnika and Banski Suhodol glacierets, in the Pirin Mountains, Bulgaria), or on the dynamics of perennial ice accumulations in caves (hereafter “ice caves”)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call