Abstract

We present a record-high solar-to-hydrogen conversion efficiency (STH) for monolithic all-silicon multi-junction solar devices. The device is based on an interdigitated back-contact silicon solar cell, in which the p- and n-regions are connected in a combination of series and parallel contacts, in order to triple the photovoltage compared to a single-junction cell. Our best device provides an open-circuit voltage of 1.99 V, larger than the water redox potential of 1.23 V plus overpotentials at the electrodes, as well as a short-circuit current density of 12.6 mA/cm2. Coupled to a sulphuric acid electrolysis system, with platinum and ruthenium dioxide electrodes, our device shows an STH of 14.5% at 1.63 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.