Abstract

Drawing a distinction between the suspended solid size and concentration impacts on physical clogging process in the Managed Aquifer Recharge (MAR) systems has been fraught with difficulties. Therefore, the current study was then aimed to statistically investigate and differentiate the impacts of clay-, silt- and sand-sized suspended solids at three concentration levels including 2, 5 and 10 g/L, compared with the clean water (0 g/L), on infiltration rate reducibility. The treatments were compared by virtue of Cohen’s d effect size measure. Furthermore, the competency of Singular Spectrum Analysis (SSA) was evaluated in reconstruction of infiltration rate. Results showed that clay-sized suspended solids were found to be the most important determining factor in physical clogging occurrence. The effect size measure highlighted that a lower concentration level of clay-sized suspended solids, that is, 2 g/L could be more important in trigging the physical clogging than a higher concentration level of silt-sized suspended solids namely 5 g/L. Also, we recognized that concentration level of clay-sized suspended sediments could non-linearly decrease the infiltrability. Also, findings revealed that SSA represented a high level of competency in reconstruction of the infiltration rate under all treatments. Hence, SSA can be quite beneficial to MAR systems for forecasting applications.

Highlights

  • Owing to ongoing climate change impacts and water scarcity, authorities must come up with solutions to adapt to and mitigate the threats anticipated due to water insecurity and increasing water demand stemmed mainly from population growth and rising standards of living [1]

  • Recharge (MAR), as the most economical approach to afford a new source of water for towns and small communities [2], is a scheme falling into the category of water resources management measures to artificially replenish aquifer storages, those are depleting owing to over-utilization [3]

  • CanAsclearly notice suspended solids g per litre (g/L) concentration into soil

Read more

Summary

Introduction

Owing to ongoing climate change impacts and water scarcity, authorities must come up with solutions to adapt to and mitigate the threats anticipated due to water insecurity and increasing water demand stemmed mainly from population growth and rising standards of living [1]. Recharge (MAR), as the most economical approach to afford a new source of water for towns and small communities [2], is a scheme falling into the category of water resources management measures to artificially replenish aquifer storages, those are depleting owing to over-utilization [3]. That means once groundwater is relentlessly over-drafted, the volume extracted from the aquifer cannot be recovered by the natural recharge including the diffuse and localized recharge. There is an urgent need to compensate for the balance lost due to the groundwater over-exploitation. In this respect, MAR has been gaining

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.