Abstract
Because of helical phase wavefront distribution, vortex electromagnetic waves are considered to carry more information and additional degrees of freedom than traditional spherical waves. Therefore, a vortex wave carrying orbital angular momentum (OAM) can improve inversion and imaging accuracy. In this work, we revisit the reconstruction of three-dimensional objects in layered composite structures extended with OAM. In forward modeling, the concentric uniform circle array is used to generate electromagnetic vortex beams. To analyze the difference of vortex beams, the electric field radiation pattern and phase pattern distribution of OAM waves with different modes are calculated. Then, the scattered field of layered media illuminated by different OAM beams is determined by the dyadic Green's function and the stabilized biconjugate gradient technique with a fast Fourier transform algorithm. In the inversion, the variational Born iterative method is used to reconstruct targets in layered composite structures, and multiple OAM modes are used to improve the reconstruction results. The numerical results prove that the permittivity of the target can be better reconstructed by using the multiple OAM modes rather than the traditional spherical wave. With the increase of OAM mode number, the reconstructed target parameters are closer to the true value. We expect that our results will provide a better understanding of the OAM and pave the way for the improvement of inversion and optical imaging technology using vortex waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.