Abstract
Traditional multi-mode orbital angular momentum (OAM) beams suffer from low energy efficiency in detection since the divergence angle tends to increase with increasing order of the OAM mode. Thus, OAM beams with equal divergence angle are highly desirable. In this paper, a frequency-diverse multi-mode (FDMM) OAM modulator with approximately equal divergence angle is proposed. The modulator is composed of an OAM modulation metasurface and a spatial filter (SF) with narrow passband. Firstly, the OAM modulation metasurface is designed based on multiple ring-like regions with different radii in the metasurface aperture. Each mode of OAM beam is generated at a corresponding frequency point in one region. Thus, the metasurface aperture can generate different modes of OAM beams at different frequencies (i.e., FDMM OAM beams) simultaneously. Then, the SF with narrow passband is proposed through synthesizing multi-layer frequency selective metasurfaces, aiming to reduce interferences between different modes of OAM beams. Finally, the FDMM OAM modulator is realized by superposing the SF on the OAM modulation metasurface. The FDMM OAM modulator can generate six modes of OAM beams (i.e., , and modes) at 12.5 GHz, 13.0 GHz and 13.6 GHz, respectively. A multi-mode OAM coincidence imaging model based on the FDMM OAM modulator is established. The simulation and experiment results show that the proposed FDMM OAM modulator can be used for target reconstruction and the coincidence imaging performance can be improved assisted by an optimization algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.