Abstract

AbstractWe present results from the reconstruction of the electron diffusion region of magnetotail reconnection observed by the Magnetospheric Multiscale (MMS) spacecraft on 11 July 2017. In the event, the conditions were suited for the reconstruction technique, developed by Sonnerup et al. (2016, https://doi.org/10.1002/2016JA022430), that produces magnetic field and electron streamline maps based on a two‐dimensional, time‐independent, inertialess form of electron magnetohydrodynamic equation, assuming an approximately symmetric current sheet and negligible guide magnetic field. For such a two‐dimensional and steady structure, the X line orientation can be estimated from a method based on Ampère's law using single‐spacecraft measurements of the magnetic field and electric current density. Our reconstruction results indicate that although the X point was not captured inside its tetrahedron, MMS approached the X point as close as one electron inertial length ~27 km. The opening angle of the recovered separatrix field line, combined with theory, suggests that the dimensionless reconnection rate was 0.17, which is consistent with the measured reconnection electric field 2–4 mV/m. The stagnation point of the reconstructed electron flow is shifted earthward of the X point by ~90 km, one possible interpretation of which is discussed. The energy conversion rate j · E′ in the electron frame tends to be higher near the stagnation point, consistent with earlier observations and simulations, and is not correlated with the amplitude of broadband electrostatic waves observed in the upper‐hybrid frequency range. The latter suggests that the waves did not contribute to energy dissipation in this particular electron diffusion region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.