Abstract

AbstractWe present first results of the reconstruction of the electron diffusion region (EDR) based on a two‐dimensional, incompressible, and inertialess version of the electron magnetohydrodynamics equations. The method is applied to 30 ms resolution magnetic field, and electron moments data taken when the Magnetospheric Multiscale (MMS) spacecraft observed an EDR of near‐antiparallel magnetopause reconnection on 16 October 2015. An X‐type magnetic field configuration and quadrupolar Hall fields, consistent with the electron inflow and outflow, are successfully recovered. While MMS encountered a region of significant energy dissipation on the magnetospheric side of the sub‐ion‐scale current sheet, the reconstructions show that the MMS tetrahedron missed the X line by a distance of a few kilometers (~2 electron inertial lengths). The estimated reconnection electric field is 0.42–0.98 mV/m, equivalent to the dimensionless reconnection rate of 0.11–0.25. Signatures of three‐dimensional structures and/or time‐dependent processes are also identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call