Abstract

Charge density wave (CDW) under an applied electric field in constraint geometry experience stresses, which can easily exceed a plastic threshold. The stress is resolved by the ground state reconstruction which proceed via creation of topological defects like solitons and dislocations—the CDW vortices. These states can be observed experimentally either in average at macroscopic scales of X-ray and multijunction space resolved studies, at mesoscopic scales of coherent X-ray micro-diffraction and nano-junctions or individually as by the STM. Here, we report numerical modeling taking into account multiple fields in their mutual nonlinear interactions: the phase and the amplitude of the CDW order parameter, distributions of the electric field, of the density and the current of normal carriers. Following events of creation and the subsequent evolution of dislocations, we find that vortices are formed in the junction when the voltage across, or the current through, exceed a threshold. The number of vortices remnant in the reconstructed ground state increases stepwise—in agreement with experiments. The vortex core concentrates the voltage drop across the junction giving rise to observed peaks of the interlayer tunneling. The studied reconstruction in junctions of CDWs may be relevant to modern efforts of the field-effect transformations in other correlated electronic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call