Abstract
Infertile people who suffered from loss of uterine structures and/or functions can be treated through gestational surrogacy or uterus transplantation, which remains challenging due to the ethical and social issues, the lack of donor organs as well as technical and safety risks. One promising solution is to regenerate and reconstruct a bioartificial uterus for transplantation through the engineering of uterine architecture and appropriate cellular constituents. Here, we developed a well-defined system to regenerate a functional rat uterine through recellularization of the decellularized uterine matrix (DUM) patches reseeded with human mesenchymal stem cells (hMSCs). Engraftment of the recellularized DUMs on the partially excised uteri yielded a functional rat uterus with a pregnancy rate and number of fetuses per uterine horn comparable to that of the control group with an intact uterus. Particularly, the recellularized DUMs enhanced the regeneration of traumatic uterine in vivo because of MSC regulation. The established system here will shed light on the treatment of uterine infertility with heterogeneous DUMs/cell resources through tissue engineering in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.