Abstract
Given the stray capacitance between the probe and sample surface, electrostatic force microscopy (EFM) suffers from the probe averaging effect of electrostatic signals for measuring nanoscale potential distributions. A method for reconstructing an EFM image is presented by using the step response function (SRF) as the system transfer function. The SRF is constructed numerically by conducting finite element method simulations and reconsidering both the probe shape and tip-sample distance. The deconvolution of the probe averaging effect for the electrostatic image is demonstrated using an elaborated sample of graphene ribbons that are used as nanoscale surface potential steps. The lateral resolution of the electrostatic image is improved via deconvolution. The results present a powerful tool for explaining the EFM image to reduce the probe averaging effect effectively, especially for the sample with nanoscale potential steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.