Abstract

In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.