Abstract
Attosecond Pulse Trains (APT) generated by high-harmonic generation (HHG) of high-intensity near-infrared (IR) laser pulses have proven valuable for studying the electronic dynamics of atomic and molecular species. However, the high intensities required for high-photon-energy, high-flux HHG usually limit the class of adequate laser systems to repetition rates below 10 kHz. Here, APT’s generated from the 100 kHz, 160 W, 40 fs laser system (HR-1) currently under commissioning at the extreme light infrastructure attosecond light pulse source (ELI-ALPS) are reconstructed using the reconstruction of attosecond beating by interference of two-photon Transitions (RABBIT) technique. These experiments constitute the first attosecond time-resolved photoelectron spectroscopy measurements with attosecond pulses performed at 100 kHz repetition rate and one of the first experiments performed at ELI-ALPS in the framework of projects commissioning its newly installed technologies. These RABBIT measurements were taken with an additional IR field temporally locked to the extreme-ultraviolet APT, resulting in an atypical ω beating. We show that the phase of the 2ω beating recorded under these conditions is strictly identical to that observed in standard RABBIT measurements within second-order perturbation theory. This work highlights an experimental simplification for future experiments based on attosecond interferometry (or RABBIT), which is particularly useful when lasers with high average powers are used.
Highlights
Attosecond Pulse Trains (APT) generated by high-harmonic generation (HHG) of high-intensity near-infrared (IR) laser pulses have proven valuable for studying the electronic dynamics of atomic and molecular species
APT’s generated from the 100 kHz, 160 W, 40 fs laser system (HR-1) currently under commissioning at the extreme light infrastructure attosecond light pulse source (ELI-ALPS) are reconstructed using the reconstruction of attosecond beating by interference of two-photon Transitions (RABBIT) technique
These experiments constitute the first attosecond time-resolved photoelectron spectroscopy measurements with attosecond pulses performed at 100 kHz repetition rate and one of the first experiments performed at ELI-ALPS in the framework of projects commissioning its newly installed technologies
Summary
If a many-cycle infrared (IR) pulse is used for HHG, a set of discrete XUV harmonics are produced, resulting in an attosecond pulse train (APT) [2, 3] Characterizing these APT’s is challenging as traditional methods of measuring spectral phase, such as frequency resolved optical gating (FROG) [26] and spectral phase interferometry for direct electric-field reconstruction [27], 0953-4075/19/23LT01+07$33.00. The corresponding side-band intensity beats at twice the angular frequency of the IR pulse with an offset phase corresponding to the spectral-phase difference of the neighboring harmonics and the atomic phases [34] These atomic phases have been measured experimentally and can be reasonably predicted by theory for atoms [10] and molecules [35], allowing for the isolation of the XUV spectral phase, which enables the reconstruction of the APT
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.