Abstract
This paper addresses the problem of reconstructing a low-rank signal matrix observed with additive Gaussian noise. We first establish that, under mild assumptions, one can restrict attention to orthogonally equivariant reconstruction methods, which act only on the singular values of the observed matrix and do not affect its singular vectors. Using recent results in random matrix theory, we then propose a new reconstruction method that aims to reverse the effect of the noise on the singular value decomposition of the signal matrix. In conjunction with the proposed reconstruction method we also introduce a Kolmogorov–Smirnov based estimator of the noise variance.We show with an extensive simulation study that the proposed method outperforms oracle versions of both soft and hard thresholding methods, and closely matches the performance of the oracle orthogonally equivariant method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.