Abstract

In this paper we study the problem of reconstruction of a low-rank matrix observed with additive Gaussian noise. First we show that under mild assumptions (about the prior distribution of the signal matrix) we can restrict our attention to reconstruction methods that are based on the singular value decomposition of the observed matrix and act only on its singular values (preserving the singular vectors). Then we determine the effect of noise on the SVD of low-rank matrices by building a connection between matrix reconstruction problem and spiked population model in random matrix theory. Based on this knowledge, we propose a new reconstruction method, called RMT, that is designed to reverse the effect of the noise on the singular values of the signal matrix and adjust for its effect on the singular vectors. With an extensive simulation study we show that the proposed method outperform even oracle versions of both soft and hard thresholding methods and closely matches the performance of a general oracle scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call