Abstract
In this work we propose a method for computing mesh representations of 3D objects reconstructed from a set of silhouette images. Our method is based on the polygonization of volumetric reconstructions by using a modified version of the dual contouring method. In order to apply dual contouring on volumetric reconstruction from silhouettes we devised a method that is able to determine the discrete topology of the surface in relation to the octree cells. We also developed a new scheme for computing hermitian data representing the intersections of conic volumes with the octree cells and their corresponding normals with subpixel accuracy. Due to the discrete and extremely noisy nature of the data used in the reconstruction we had to devise a different criterion for mesh simplification that applies topological consistency tests only when the geometric error measure is beyond a given tolerance. We present results of the application of the proposed method in the extraction of a mesh corresponding to the surface of objects of a real scene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have