Abstract

An improved approach for electrical impedance tomography (EIT) image reconstruction, based on modifying the forward and inverse solutions, is proposed. In this approach, the EIT forward problem is solved via the finite element method (FEM) using two types of elements. The inverse problem is solved by the modified Newton–Raphson method, whereas the condition number of the Hessian matrix is being monitored. At the early stage of the reconstruction, first-order elements are used, and if the condition number exceeds the allowable limit, the algorithm restarts. Otherwise, if the reconstruction error becomes lower than a predefined threshold, second-order elements are employed in the forward solution in order to preserve the precision of the final results. The latter stage converges in very few iterations. Since the solution speed with the first-order FEM is considerably higher than the second-order FEM, the reconstruction speed improves considerably by this approach, whereas the accuracy of the results is guaranteed by the well-conditioned Hessian matrix. Numerical simulations and experiments are followed by comparisons with other reconstruction methods which demonstrate the reliability and high solution speed of this approach. According to the results, the convergence of the proposed method is significantly improved, and its speed is 2–200 times higher than the previously developed methods with the same level of precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.