Abstract
The basic difficulty encountered in filtering-based multiscale boundary detection methods is the elimination of noise and insignificant edges without distorting the shape of boundaries. These methods remove noise and unnecessary detail by blurring the input image at different scales, which results in the loss of positional accuracy at the image discontinuities. In this paper, a nonlinear multiscale boundary detection method which prevents the conflict between the detection and localization goals is introduced. The method uses multiscale representations of coupled Markov random fields and applies a stochastic regularization scheme based on the Bayesian approach. This allows the robust integration of boundary information extracted at multiple scales simultaneously. The scheme is applicable to intensity and range images as well as to sparse data and eliminates the dependency on edge operator size which is the main difficulty in filtering-based multiscale techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.