Abstract

Vertebrate genome evolution remains a hotly debated topic, specifically as regards the number and the timing of putative rounds of whole genome duplication events. In this study, I sought to shed light to this conundrum through assessing the evolutionary history of the oxytocin/vasotocin receptor family. I performed ancestral analyses of the genomic segments containing oxytocin and vasotocin receptors (OTR-VTRs) by mapping them back to the reconstructed ancestral vertebrate/chordate karyotypes reported in five independent studies (Nakatani et al., 2007; Putnam et al., 2008; Smith and Keinath, 2015; Smith et al., 2018; Simakov et al., 2020) and found that two alternative scenarios can account for their evolution: one consistent with one round of whole genome duplication in the common ancestor of lampreys and gnathostomes, followed by segmental duplications in both lineages, and another consistent with two rounds of whole genome duplication, with the first occurring in the gnathostome-lamprey ancestor and the second in the jawed vertebrate ancestor. Combining the data reported here with synteny and phylogeny data reported in our previous study (Theofanopoulou et al., 2021), I put forward that a single round of whole genome duplication scenario is more consistent with the synteny and evolution of chromosomes where OTR-VTRs are encountered, without excluding the possibility of a scenario including two rounds of whole genome duplication. Although the analysis of one gene family is not able to capture the full complexity of vertebrate genome evolution, this study can provide solid insight, since the gene family used here has been meticulously analyzed for its genes’ orthologous and paralogous relationships across species using high quality genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.