Abstract
The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high-dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.