Abstract

The fossil diatom records preserved in radiometrically dated sediment cores from four shallow lakes in the Norfolk Broads, UK (Barton Broad, Rollesby Broad, Wroxham Broad and Upton Broad) were analysed. A weighted-averaging partial least squares (WA-PLS) diatom-total phosphorus (TP) transfer function, based on a training set of 152 mostly shallow (maximum depth < 3 m) lakes in northwest Europe, was applied to the full diatom dataset for each core to reconstruct the past TP concentrations of the lakes. Owing to the dominance of non-planktonic Staurosira, Pseudostaurosira and Staurosirella spp. (formerly classified in the genus Fragilaria) throughout the diatom records, the quantitative diatom inferred TP (DI-TP) concentrations did not adequately reflect the changes that occurred in the lakes as indicated by shifts in the other diatom taxa, or as reported in the literature. This was most apparent at Barton Broad and Rollesby Broad, where there was a marked increase in the importance of planktonic taxa associated with highly nutrient-rich waters but no increase in DI-TP. The modern and fossil data were thus square-root transformed to downweight the dominant taxa and the new transfer function was applied to the cores. An improvement was seen only in the reconstruction for Barton Broad. Finally, the Staurosira, Pseudostaurosira and Staurosirella spp. were removed from the modern and fossil diatom data, and the transfer function was re-applied. The trends in DI-TP became less clear, particularly for Upton Broad and Barton Broad, owing to a paucity of data for calibration once these taxa were deleted from the counts data. The problems associated with reconstructing trophic status and determining TP targets for restoration from fossil diatom assemblages in these systems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.