Abstract

We explored the possibility of using artificial neural networks (ANN) to develop quantitative inference models in paleolimnology. ANNs are dynamic computer systems able to learn the relations between input and output data. We developed ANN models to infer pH from fossil diatom assemblages using a calibration data set of 76 lakes in Quebec. We evaluated the predictive power of these models in comparison with the two most commonly methods used in paleolimnology: Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS). Results show that the relationship between species assemblages and environmental variables of interest can be modelled by a 3-layer back-propagation network, with apparent R2 and RMSE of 0.9 and 0.24 pH units, respectively. Leave-one-out cross-validation was used to access the reliabilities of the WA, WA-PLS and ANN models. Validation results show that the ANN model (R2jackknife = 0.63, RMSEjackknife = 0.45, mean bias = 0.14, maximum bias = 1.13) gives a better predictive power than the WA model (R2jackknife = 0.56, RMSEjackknife = 0.5, mean bias = −0.09, maximum bias = −1.07) or WA-PLS model (R2jackknife = 0.58, RMSEjackknife = 0.48, mean bias = −0.15, maximum bias = −1.08). We also evaluated whether the removal of certain taxa according to their tolerance changed the performance of the models. Overall, we found that the removal of taxa with high tolerances for pH improved the predictive power of WA-PLS models whereas the removal of low tolerance taxa lowered its performance. However, ANN models were generally much less affected by the removal of taxa of either low or high pH tolerance. Moreover, the best model was obtained by averaging the predictions of WA-PLS and ANN models. This implies that the two modelling approaches capture and extract complementary information from diatom assemblages. We suggest that future modelling efforts might achieve better results using analogous multi-model strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.