Abstract

Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.