Abstract
Color changes can be achieved by straining photonic crystals or gratings embedded in stretchable materials. However, the multiple repeat units and the need for a volumetric assembly of nanostructures limit the density of information content. Inspired by surface reliefs on oracle bones and music records as a means of information archival, here, surface-relief elastomers are endowed with multiple sets of information that are accessible by mechanical straining along in-plane axes. Distinct from Bragg diffraction effects from periodic structures, trenches that generate color due to variations in trench depth, enabling individual trench segments to support a single color, are reported. Using 3D printed cuboids, trenches of varying geometric parameters are replicated in elastomers. These parameters determine the initial color (or lack thereof), the response to capillary forces, and the appearance when strained along or across the trenches. Strain induces modulation in trench depth or the opening and closure of a trench, resulting in surface reliefs with up to six distinct states, and an initially featureless surface that reveals two distinct images when stretched along different axes. The highly reversible structural colors are promising in optical data archival, anti-counterfeiting, and strain-sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.