Abstract
The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or ‘smart’ materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications. Graphene and its macroscopic assemblies and composites are currently enabling a range of high-performance ‘smart’ materials that are responsive to various stimuli. In this Review, different graphene-based smart materials are described, along with their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.