Abstract

Human costly punishment is rooted in multiple regions across large-scale functional systems, a collection of which constitutes the costly punishment network (CPN). Our previous study found that the CPN is intrinsically organized in an optimized and reliable manner to support individual costly punishment propensity. However, it remains unknown how the CPN is reconfigured in response to external cognitive demands in punishment decision-making. Here, we combined resting-state and task-functional magnetic resonance imaging to examine the task-related reconfigurations of intrinsic organizations of the CPN when participants made decisions of costly punishment in the Ultimatum Game. Although a strong consistency was observed in the overall pattern and each nodal profile between the intrinsic (task-free) and extrinsic (task-evoked) functional connectivity of the CPN, condition-general and condition-specific reconfigurations were also evident. Specifically, both unfair and fair conditions induced increases in functional connectivity between a few specific pairs of regions, and the unfair condition additionally induced increases in network efficiency of the CPN. Intriguingly, the specific changes in global efficiency of the CPN in the unfair condition were associated with individual differences in costly punishment after adjusting for the corresponding results in the fair condition, which were further identified for females but not for males. These findings were largely reproducible on independent samples. Collectively, our findings provide novel insights into how the CPN adaptively reconfigures its network architecture to support costly punishment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call