Abstract

A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.