Abstract

In this study, we perform reconfigurable n- and p-channel operations of a tri-top-gate field-effect transistor (FET) made of a p+-i-n+ silicon nanowire (SiNW). In the reconfigurable FET (RFET), two polarity gates and one control gate induce virtual electrostatic doping in the SiNW channel. The polarity gates are electrically connected to each other and program the channel type, while the control gate modulates the flow of charge carriers in the SiNW channel. The SiNW RFET features simple device design, symmetrical electrical characteristics in the n- and p-channel operation modes using p+-i-n+ diode characteristics, and both operation modes exhibit high ON/OFF ratios (∼106) and high ON currents (∼1 μA μm−1). The proposed device is demonstrated experimentally using a fully CMOS-compatible top-down processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.